Mechanical stimulation of chondrocyte-agarose hydrogels.
نویسندگان
چکیده
Articular cartilage suffers from a limited repair capacity when damaged by mechanical insult or degraded by disease, such as osteoarthritis. To remedy this deficiency, several medical interventions have been developed. One such method is to resurface the damaged area with tissue-engineered cartilage; however, the engineered tissue typically lacks the biochemical properties and durability of native cartilage, questioning its long-term survivability. This limits the application of cartilage tissue engineering to the repair of small focal defects, relying on the surrounding tissue to protect the implanted material. To improve the properties of the developed tissue, mechanical stimulation is a popular method utilized to enhance the synthesis of cartilaginous extracellular matrix as well as the resultant mechanical properties of the engineered tissue. Mechanical stimulation applies forces to the tissue constructs analogous to those experienced in vivo. This is based on the premise that the mechanical environment, in part, regulates the development and maintenance of native tissue(1,2). The most commonly applied form of mechanical stimulation in cartilage tissue engineering is dynamic compression at physiologic strains of approximately 5-20% at a frequency of 1 Hz(1,3). Several studies have investigated the effects of dynamic compression and have shown it to have a positive effect on chondrocyte metabolism and biosynthesis, ultimately affecting the functional properties of the developed tissue(4-8). In this paper, we illustrate the method to mechanically stimulate chondrocyte-agarose hydrogel constructs under dynamic compression and analyze changes in biosynthesis through biochemical and radioisotope assays. This method can also be readily modified to assess any potentially induced changes in cellular response as a result of mechanical stimuli.
منابع مشابه
The Effect of Dynamic Shear Force on Chondrocyte Biosynthesis in Agarose Gels
The dense extracellular matrix (ECM) within the articular cartilage derives its compressive modulus from the electrostatic and osmotic interactions between highly charged glycosaminoglycan (GAG) chains. Furthermore, the structural integrity of the ECM comes from the tightly interwoven collagen network, which accounts for the tensile and shear stiffness of the cartilage. Due to the avascular, an...
متن کاملDevelopment and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
Osteoarthritis is a severe socio-economical disease, for which a suitable treatment modality does not exist. Tissue engineering of cartilage transplants is the most promising method to treat focal cartilage defects. However, current culturing procedures do not yet meet the requirements for clinical implementation. This article presents a novel bioreactor device for the functional tissue enginee...
متن کاملInsights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels.
Interstitial flow in articular cartilage is secondary to compressive and shear deformations during joint motion and has been linked with the well-characterized heterogeneity in structure and composition of its extracellular matrix. In this study, we investigated the effects of introducing gradients of interstitial flow on the evolution of compositional heterogeneity in engineered cartilage. Usi...
متن کاملOptimization of Parameters for Articular Cartilage Tissue Engineering Withdeformational Loading
INTRODUCTION Using functional tissue engineering approaches, a number of culture systems have been developed that incorporate physiologic mechanical signals to foster tissue development (1,2). Short-term studies demonstrate that dynamic deformational loading increases matrix biosynthesis in chondrocyte-seeded agarose hydrogels (3,4). In long term studies, daily dynamic deformational loading (1H...
متن کاملGrowth Factor Supplementation and Dynamic Hydrostatic Pressurization for Articular Cartilage Tissue Engineering
INTRODUCTION Articular cartilage transmits the stresses (5-12 MPa) that occur in joints with loading [1]. In vivo, a number of mechano-electrochemical signals arise with deformation of cartilage [2]. One of these signals, hydrostatic pressurization, occurs as a result of the high water content of the tissue and the small pore size. With deformation, fluid is constrained from rapidly leaving the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 68 شماره
صفحات -
تاریخ انتشار 2012